DECIDING FINITENESS FOR MATRIX SEMIGROUPS OVER FUNCTION FIELDS OVER FINITE FIELDS

A note on a paper by Rockmore, Tan, and Beals

BY

Gábor Ivanyos*

Computer and Automation Institute, Hungarian Academy of Sciences
Lágymányosi u. 11., H-1111 Budapest, Hungary
e-mail: Gabor.Ivanyos@sztaki.hu

ABSTRACT

We present a deterministic polynomial time algorithm for testing finiteness of a semigroup S generated by matrices with entries from function fields of constant transcendence degree over finite fields. A special case of the problem was shown to be algorithmically soluble in [RTB] by giving a sharp exponential upper bound on the dimension of the matrix algebra generated by S over the field of constants. One of the exponential time algorithms proposed in [RTB] was expected to be improvable. The polynomial time method presented in this note combines the ideas of that algorithm with a procedure from [IRSz] for calculating the radical.

We assume that the reader is familiar with the elementary notions and facts from the theory of associative algebras.

The following simple observation from [RTB] reduces our task to deciding finiteness of certain matrix rings.

OBSERVATION: Let F be a finite field, K be an arbitrary extension field of F, and S be a multiplicative subsemigroup of $M_n(K)$ generated by the finite set $\{a_1, \ldots, a_s\}$ of n by n matrices. Then S is finite if and only if the F-subalgebra A of $M_n(K)$ generated by a_1, \ldots, a_s is finite.

It is pointed out in [RTB], Theorem 3.16 that $\dim_F A$ can be exponential in n. The next statement enables us to avoid computing a basis of the whole algebra.

^{*} Research supported by NWO-OTKA Grant N26673, FKFP Grant 0612/1997, OTKA Grants 016503, 022925, and EC Grant ALTEC-KIT. Received January 4, 2000

LEMMA: Let A be a finitely generated algebra over an arbitrary field F and assume that I is a nilpotent ideal of A such that A/I is finite dimensional. Then A is finite dimensional as well.

Proof: Assume that a_1, \ldots, a_s generate A as an F-algebra. Choose elements b_1, \ldots, b_r from A such that $b_1 + I, \ldots, b_r + I$ form a basis of A/I. Write $a_l = \sum_{k=1}^r \alpha_{lk}b_k + c_l$ and $b_ib_j = \sum_{k=1}^r \beta_{ijk}b_k + d_{ij}$ with $\alpha_{lk}, \beta_{ijk} \in F$ and $c_l, d_{ij} \in I$. We claim that the elements c_l $(l = 1, \ldots, s)$ and d_{ij} $(i, j = 1, \ldots, r)$ generate I as an ideal of A. Indeed, let J be the ideal generated by these elements. Obviously $J \leq I$. On the other hand, $b_1 + J, \ldots, b_r + J$ span a subalgebra of A/J complementary to I/J. Also, it contains all the generators $a_i + J$ for A/J. Hence I/J = (0), which means that I = J. From the claim we infer that I/I^2 is a finitely generated A/I-module and hence it is finite dimensional over F. Thus A/I^2 is finite dimensional as well and the proof can be completed by induction on the nilpotency class of I.

The next result can be considered as a generalization of [RTB], Theorem 3.2. It turns out that modulo the radical of KA, the dimension of A is small.

THEOREM: Let F be an arbitrary field. Assume that K is an extension field of F such that for every finite extension E of F the algebra $K \otimes_F E$ is a field (e.g., K is purely transcendental over F). Let A be a finitely generated F-subalgebra of the finite dimensional K-algebra B. Let J stand for the Jacobson radical of KA and let ϕ stand for the natural projection $B \to B/J$. Then the following assertions are equivalent:

- (1) $\dim_F A$ is finite.
- (2) $\dim_F \phi(A)$ is finite.
- (3) $\phi(KA)$ and $K \otimes_F \phi(A)$ are isomorphic K-algebras.
- (4) $\dim_F \phi(A) \leq \dim_K(B)$.

Proof: The implications $(1)\Rightarrow(2)$, $(3)\Rightarrow(4)$, and $(4)\Rightarrow(2)$ are obvious. Since J is a finite dimensional nilpotent K-algebra we have $J^{\dim_K J}=(0)$. This also implies that $\ker \phi_{|A}=A\cap J$ is a nilpotent ideal of A. The implication $(2)\Rightarrow(1)$ follows from this observation and the lemma.

To see that (2) implies (3), assume that $\dim_F \phi(A)$ is finite. Without loss of generality we may assume that B=KA. By going over the factors $A/(A\cap J)$ and $B/K(A\cap J)$, we may further assume that $A\cap J=(0)$. Then, since the K-linear span of every nilpotent ideal of A is a nilpotent ideal of B, A is either semisimple or zero. If A is zero then (3) trivially holds. Otherwise let A_1,\ldots,A_r

be the minimal nonzero ideals of A. Then $A = A_1 + \cdots + A_r$ and the sum is direct. Also, $K \otimes_F A$ is the direct sum of the ideals $K \otimes_F A_i$. We claim that for every index i the K-algebra $K \otimes_F A_i$ is simple. Indeed, let C_i be the center of A_i . Then C_i is a finite extension field of F. By the assumption on K, $K \otimes_F C_i$ is again a field. On the other hand, it is easy to see that the center of $K \otimes_F A_i$ is $K \otimes_F C_i$. Thus $K \otimes_F A_i$ is a simple K-algebra, as claimed. Next, observe that the natural map $K \otimes A \to B$ induced by the multiplication of elements of A by scalars from K is a K-algebra epimorphism. But this map is a monomorphism as well because it is nonzero on any simple component $K \otimes_K A_i$ of $K \otimes_K A$. This concludes the proof of the theorem.

In [IRSz] a deterministic algorithm is presented, which computes the radical of a matrix algebra $A \leq M_n(F_q(x_1,\ldots,x_m))$. The running time is $(n+s+d+\log q)^{O(m)}$, where s is the number of generators and d is the maximum degree among all the numerators and denominators of the entries appearing in the generators for A. (For a more general — and more transparent — approach to computing the radical of algebras of positive characteristic, the reader is referred to [CIW].) Using the algorithm of [IRSz], we can find generators for the algebra $\phi(A)$ defined in the theorem in time $(n+s+d+\log q)^{O(m)}$. Then we proceed with collecting F_q -linearly independent elements of $\phi(A)$ as products of generators. We either find a basis of $\phi(A)$ in $O(n^2)$ rounds, or stop with the conclusion that our semigroup is infinite. Note that the method can be considered as an improved and generalized version of the algorithm proposed in [RTB], Subsection 3.4.1. We obtained the following:

COROLLARY: There is a deterministic algorithm which, in time $(n+s+d+\log q)^{O(m)}$, decides whether a semigroup generated by a finite set of matrices from the ring $M_n[F_q(x_1,\ldots,x_m)]$ is finite. Here, s is the number of generators and d stands for the maximum among the degrees of all the numerators and denominators of the entries in the generators. In particular, the algorithm runs in polynomial time for bounded m.

References

- [CIW] A. M. Cohen, G. Ivanyos and D. B. Wales, Finding the radical of an algebra of linear transformations, Journal of Pure and Applied Algebra 117–118 (1997), 177–193.
- [IRSz] G. Ivanyos, L. Rónyai and Á. Szántó, Decomposition of algebras over $F_q(X_1, \ldots, X_m)$, Applicable Algebra in Engineering, Communication and Computing **5** (1994), 71–90.

[RTB] D. N. Rockmore, K.-S. Tan and R. Beals, Deciding finiteness for matrix groups over function fields, Israel Journal of Mathematics 109 (1999), 93–116.